find the value of x in the adjacent figure, if AO and BO are bisector of angle "a" and angle "b"

solution
∠D=120∘,∠C=130∘
OA and OB are the bisectors of ∠A and ∠B.
In quadrilateral ABCD,
∠A+∠B+∠C+∠D=360∘
(Sum of angles of a quadrilateral)
⇒∠A+∠B+130∘+120∘=360∘∠A+∠B+250∘=360∘∠A+∠B=360∘-250∘=110∘
and 12∠A+12∠B=210∘2=55∘
(∵ OA and OB are bisector of ∠A and ∠B respectively )
∠OAB+∠OBA=55∘⇒∠OAB+∠OBA+∠AOB=180∘
(Sum of angles of a triangle)
⇒55∘+∠AOB=180∘⇒∠AOB=180∘−55∘=125∘∴∠AOB=125∘
No comments